Solving Single and Multiple Plant Sourcing Problems with a Multidimensional Knapsack Model
نویسنده
چکیده
This research addresses sourcing decisions and how those decisions can affect the management of a company's assets. The study begins with a single-plant problem, in which one facility chooses, from a list of parts, which parts to bring in-house. The selection is based on maximizing the value of the selected parts, while remaining within the plant's capacity. This problem is defined as the insourcing problem and modeled as a multidimensional knapsack problem (MKP). The insourcing model is extended to address outsourcing and multiple plants. This multi-plant model, also modeled as an MKP, enables the movement of parts from one plant to another and consideration of a company-wide objective function (as opposed to a single-plant objective function as in the insourcing model). The sourcing problem possesses characteristics that distinguish it from the standard MKP. One such characteristic is what we define as multiple attributes. To understand the multiple attribute characteristic, we compare the various dimensions in the multidimensional knapsack problem. A classification is given for an MKP as either having a single attribute (SA) or multiple attributes (MA). Mathematically, the problems of each attribute classification can be modeled in the same way with simply a different interpretation of the knapsack constraints. However, experimentation indicates that the MA-MKP is more difficult to solve than the SA-MKP. For small problems, with 100 variables and 5 constraints, the CPU time required to find the optimal solution for MA-MKP to SA-MKP problems has a ratio of 32:1. To determine effective methods for addressing the MA-MKP, standard mixed integer programming techniques are tested. The results of this testing are that the exact approaches are not successful in dramatically reducing the solution time to the level of the SA problems. However, a simple heuristic that performs very well on the MA-MKP is presented. The heuristic utilizes variations on the benefit-to-cost ratio and strongest surrogate constraints. The results from experimentation for MA-MKP problem sets, generated using the methods for standard MKP test data sets in the literature, are presented and indicate that the heuris-tic performs well and improves with larger problems. The average gap between the heuristic solution and the optimal solution is 1.39% for 200-part problems and is reduced to 0.69% when the size of the problem is increased to 298 parts. Although the MA characteristic reflects the sourcing problem, the actual data used in the experimentation is generated with techniques presented in the literature for standard …
منابع مشابه
A dynamic programming approach for solving nonlinear knapsack problems
Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the pr...
متن کاملSolving the Multidimensional Multiple-choice Knapsack Problem by constructing convex hulls
This paper presents a heuristic to solve the Multidimensional Multiple-choice Knapsack Problem (MMKP), a variant of the classical 0–1 Knapsack Problem. We apply a transformation technique to map the multidimensional resource consumption to single dimension. Convex hulls are constructed to reduce the search space to find the near-optimal solution of the MMKP. We present the computational complex...
متن کاملA New Strategy for Solving Multiple-Choice Multiple-Dimension Knapsack Problem in PRAM Model
This paper presents a new heuristic algorithm for the MultipleChoice Multi-Dimension Knapsack Problem (MMKP) in PRAM model. MMKP is a variant of the classical 0-1 knapsack problem, has a knapsack with multidimensional capacity constraints, groups of items, each item having a utility value and multidimensional resource constraints. The problem is to maximize the total value of the items in the k...
متن کاملTwo models of inventory control with supplier selection in case of multiple sourcing: a case of Isfahan Steel Company
Selecting the best suppliers is crucial for a company’s success. Since competition is a determining factor nowadays, reducing cost and increasing quality of products are two key criteria for appropriate supplier selection. In the study, first the inventories of agglomeration plant of Isfahan Steel Company were categorized through VED and ABC methods. Then the models to supply two important kind...
متن کاملSexual selection and evolution of male and female choice in genetic algorithm
Variety and diversity of population are essential for convergence to global optimal in genetic algorithm. In this study, the concepts of fitness distribution, expected and cumulative fitness distribution, reproduction rate and loss of diversity are defined for a sexual selection mechanism, and their performance of this type of selection mechanism is studied theoretically. Then a genetic algorit...
متن کامل